Belinskaya’s theorem is optimal

نویسندگان

چکیده

Belinskaya's theorem states that given an ergodic measure-preserving transformation, any other transformation with the same orbits and $\mathrm{L}^1$ cocycle must be flip-conjugate to it. Our main result shows this is optimal: for all $p<1$ integrability condition on cannot relaxed being in $\mathrm{L}^p$. This also allows us answer a question of Kerr Li: transformations, Shannon orbit equivalence doesn't boil down flip-conjugacy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The condition in the trichotomy theorem is optimal

We show that the assumption λ > κ in the Trichotomy Theorem cannot be relaxed to λ > κ.

متن کامل

An optimal gap theorem

By solving the Cauchy problem for the Hodge-Laplace heat equation for d-closed, positive (1,1)-forms, we prove an optimal gap theorem for Kähler manifolds with nonnegative bisectional curvature which asserts that the manifold is flat if the average of the scalar curvature over balls of radius r centered at any fixed point o is a function of o(r−2). Furthermore via a relative monotonicity estima...

متن کامل

The optimal fourth moment theorem

We compute the exact rates of convergence in total variation associated with the ‘fourth moment theorem’ by Nualart and Peccati (2005), stating that a sequence of random variables living in a fixed Wiener chaos verifies a central limit theorem (CLT) if and only if the sequence of the corresponding fourth cumulants converges to zero. We also provide an explicit illustration based on the Breuer-M...

متن کامل

A Nonholonomic Moser Theorem and Optimal Transport

We prove the following nonholonomic version of the classical Moser theorem: given a bracket-generating distribution on a connected compact manifold (possibly with boundary), two volume forms of equal total volume can be isotoped by the flow of a vector field tangent to this distribution. We describe formal solutions of the corresponding nonholonomic mass transport problem and present the Hamilt...

متن کامل

Noether’s Theorem for Fractional Optimal Control Problems

We begin by reporting on some recent results of the authors (Frederico and Torres, 2006), concerning the use of the fractional Euler-Lagrange notion to prove a Noether-like theorem for the problems of the calculus of variations with fractional derivatives. We then obtain, following the Lagrange multiplier technique used in (Agrawal, 2004), a new version of Noether’s theorem to fractional optima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 2023

ISSN: ['0016-2736', '1730-6329']

DOI: https://doi.org/10.4064/fm266-4-2023